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SELF-ORGANIZATION

Emerging structures or organized behavior without
the external influence

Second law of thermodynamics (entropy)
llya Prigogine (Nobel prize in 1950.)
Living organisms, brain — neural networks, flocks of

birds, shoals of fish, swarms of bees, herds, social
networks, nations, religious groups



EXAMPLES OF SELF-ORGANIZATION




MODEL FOR SELF-ORGANIZATION

The information flow through fixed graph

_ight cones s
+
| ocal causal state N

_ocal complexity
C(v,t) =H(S(v,1)) O@(f%

Markov field of local causal states




STATISTICAL COMPLEXITY

Periodical and random — complex
Entropy — rough distinction of elements
Internal computability of a process

Statistical complexity — minimal information required
for optimal prediction ~ C =H(S)

Self-organization — increase of statistical complexity



PRIMARY OF WAVELETS

o Signal space L%(R) = {f; R—>C|j|f(x)| dx < oo}
e Signal energy ] = jlf(x)| dx
e Scalar product <f.g>= I f(X)g"(X)dx

 Orthonormal wavelets
W, (0 =22p@'x-K)| jkeZ} isonb. of L2(R)
 Atomic decomposition of a signal
f=3 DKy, D [K]=<f,p;, >



FOURIER TRANSFORMATION

e F—transform f (&)= f f (x)e™"dx
 Periodic signals

200 300 400
Time, ms




DEFECTS OF F-TRANSFORM

 Non-periodic signals
 Energy limitation
 Uncertainty principle AXAE > —




WAVELET TRANSFORMATION

+00

 W-transform D;[K]=< f,p, >= [ £ ()w,, (x)dx

v () =22y (21 x—k)
 Atomic decomposition of a signal f = Z 3Dkl
 Pyramid of detail coefficients

(pseudo-numeration)

j=—00 k=—00
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SOME SIGNIFICANT WAVELETS
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OPTIMAL WAVELET

* Representation of a signal in the basis
1,0,0,0,0...

317,1,-5,33...
o Complexity of the system — minimal information
required for optimal prediction
 Optimal representation — maximal complexity



PROPERTIES OF W-TRANSFORM

 Primary properties (multiresolution, locality,
singularity detection, approximative decorrelation,

energy compactition)
* Secondary properties (persistence, clustering)
« Tertiary properties (strong persistence, exp. decay)

dpekBeHUMja



COEFFICIENT DISTRIBUTION

pl2h= 1-p (1)

e Mixed Gaussién modél
P(D[i]=d)=> P(S[il=m)g(d, ", o)

e Hidden variable S[i]:(a wj

PP
_ _ o P << Py
P(DIIS[I=m)=9(.447,07) 52 <<o”



HIDDEN MARKOV MODEL

« Coefficient correlations are realized locally through
hidden states

e Model parameters  &™ = P(S[i]=m|Sp[i]=n)
d=(p/,& i o [i=1l.;mn=a..w)



EM-ALGORITHM

Tying — coefficients on a common scale are equally
distributed

terative procedure estimating both model
parameters and hidden state probabilities

nitialization : 9°,1=0

E-step : P(S|d,9")

M-step: 9" =argmax <logP(D,S|%)|D, 4 >,
Repeat E-step for I+ ~1 until convergence




BAUM-WELCH ALGORITHM

the forward-backward algorithm in the HMM literature [15]
and us the upward-downward or inward-outward algorithm
i the artificial intelligence literature [20]. [27], [32].) We will
then develop the EM steps for multiple trees. We will finish
hy incorporating into the EM steps the notion of tying within
trees from S

ion 1V

We first focus on processing a single size. 7 wavelet wree
containing ehserved wavelet coefficients w = [uryuen o wp)]
having hadden states 8 =[5 55 «=+ Sp| that take on values
m = L,ewe, M. The primary task of the E step is to
calculate the hidden state probabilities p(S; = m|w. &) and
F(S; = m, Sy =W, ). To vbtain these prohabilities, we
introduce a number of intermediate varihles.

-

1. Setup
We now introeduce some nefation for trees of abserved

5

wavelet coefficients. Similar in structure to the trees of
these trees are formed by linking the w t coefficients rather
thun the hidden states. We define 'J' to be the subtree of
observed wavelet coeffici

ents with raot at node § so that the

subtree

contains coefficient g

[ TRAMSACTIONS DN SIGNAL PEOCESSING, ¥OL. 46, N0 4, APRIL

Bayes rule applicd to (14)-{16) leads ta the desired conditional
probabilities

c‘r, (73] Am)
Zc}.-(w],- Filn)

n=l

S =mw.8) = (17}

P8 =1 Sy =n|w: )
_ e )i (n) .
= M .
Zc}.'(w_),-i.(nj
n=l

B. E Step far o Single Wavelet Tree
(Upward-Downward Algarithm

All state variables within aur HMT model are interde-
pendent: in determining probabilities for the state variables,
we musl propagate state information throoghout the tree.
The upward—downward algarithm is an efficient methad for

Now,

T is u subtree of T; {

are members of T3, then we define T3; w0 be the set of

wavelet caefficients shtained by removing the subtree T} from
T Without loss af generality, we order W so that iy is at the
root of the entire tree. Thus, T) is the entire tree of abserved
wavelet coe ents (a tree-structured version of the vector W),
In cur prebability expressions, we will interchange T] and W
when convenient.

For cach subtree T, we define the canditional likelihoods

Al = IG5 =m & 10}
[ pi () = F( %G| Sy =m0 ) [
Bnalm) = f( Tl Sy =m 6) 12}
and the joint probability functions
ev(m) = p(S; =m, T|6) (13}

with S taking discrete valees and the coefficients in TPy
taking continuous values.

Based on the HMT properties from Section I-B, the trees

T; and T}y are independent given the state variable S;. This
fact, along with the chain rule of probability calculus, leads
10 the desired state probubilities in terms af the s and (T,
First, we obiain

S =m. T = el m)d:(m) (14}

S

=ms Sy =n 7|8
= o O () i () (151
The likelihaod of W is then

M
JoE) = (T = HSi=m T
=l

= i S odm). (16)
=1

this information. The up step calculates the
hy transmitting information about the fine-scale wavelet coef

cients to the states of the coarse-scale wavelet coefficients; the
dawn step calculates the o's by propagating information about
the conmsesscale wavelet eoeflicients down 10 the siates of
le wavelet coefficients. Combining the

the fine-s

from the (s and [T via (17) and {181, we abtain conditional
pmis for the state of each wavelet coefficient in the tree.

For aur derivation. we will focus on models with mixing
companents that are Gaussian with density

N " 1 (= i)

s i 07 el mv[— |- 19
More general densities can alse be treated. Recall that we
assign to each node  in the tree a seale J(7) € {1 L}
with J =1 the finest scale and J = I the coarsest scale. In
addition, recall that (7} is the parent of nade § and o7} the
set of children to node &

Up Siey

Initiali:

or all state variables 5; at the finest scale J =1,
calealate for i =1, «oe, M

(20}

i) = glws

For all state variables S; at scale J, compute for m=

1y e M
Ay () = Z ) 21}

Hanra) = (“J'.r.f. 3 el me ofr.},m

w H o] (22)
)

Breilrm) . (23}

i)

Ayl
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I} Set J= J+ ] imove up the tree one scale).

3} If J = [. then stop; else rewumn to step 1.

Dawn Step:

Initilize: For stale varighle §) at the coarsest scale J = L,
set for = 1,00, M

o () =ps, (miL (24}

1} Set J= J—1{move down the tree ane scale).

2} For all state varisbles G at scale J, compute for m=

1= M

A
(:,-(JJ.I]:Z J-I,I.‘r‘(-‘-".r(- Ty (25)
n=l
1) If J = 1. then stop; else return to step 1.

C.E Step for Multiple Wavelet Trees

To handle J > 1 wavelet trees, we add a superscript f;
to denote the tree number. We demate the observed wavelet
coefficients us w = [wl w? «+. wh] and the hidden states
= S=[Bl5 . U} The vectors wh = [uf wh «r wuffi]
and 8% =[S 8§ «eo” Sf] contain the wavelet coefficients
and states of the Jih tree. sespectively.

To implement the E step at iteration J of the EM algarithm,

we apply the upward—downward algorithm independently 1o
mh of the J{ wavelet trees. Using the parameter estimates
=@, we calculate the probabilities p{S¥ = m|wk, #) and

(Sfa =m, F =mlwh, §) for each wee via (17) and (15).

DM Step

Omce the probabilities for the hidden states are known, the
M step is straightforward. We update the entries of #+ as

K
() Il_(z;(sp - 26)
=1

i
3 lst = ma Sy = nlwh. &
=1

(27)
"
S udp( st =miwt. g
pm=4— yreree] (25}
i
3tk = po Pk = mlwh. )
=l ., 129
Kyps(ma)
stute probabilities g () and &M are

pecfiirned by summing the individus] stale probabilies nd
then normalizing so that the prababilities sum 1o sne. Just as
for the IM model [26] and the hidden Markov chain model
[18]. updates for the Guussian misture means and variance

are performed by o weighted averaging of the empirical means

and variances with the weights chasen in proportion to the
probabilities of each mixture.
As should be clear from the E and M steps. the per-

iteration computational complexity of the EM algorithm is

linear in the number of observed wavelet coeflicients. The

averall complexity may involve a lage multiplicative constant,
depending on the number of hidden states used and the
number af iterations required to canverge. However, as shown
thraughaut this paper, even the simplest two-state HMT model
can approximate many densitics quite well.

E Tying Within Trees
The M step changes slightly when t

ing is performed within
trees, such as tying wavelet coefficients and their states within
Section IV-C for the basic
idea behind tying.) With tying, we perform extra statistical

a certain subband or scale. [Se

averaging aver cocflicients that are tied together within each
tree. For the kth tree W with wavelet coefficients i, we write

i o j i ud and g (and their states) are tied, which means that
they are modeled with the same underlying density parameters.
The set [§] = Jl_-,;|ﬂj o ¥} denotes the equivalence class of
i, with |[f]] the numbes of elements in the class.

For simplicity, we assume that all trees are md in the same
fashion {that is, the coefficients in the trees wl, - Wit

are tied in the same manner) according to the collection of
equivalence classes given by the [{]'s. In this scenario, the M

step becomes

—}i( —Zp(‘.u =m|wh, 8 (0)

1
n, 1
Srrtd wzm§
x p(Sh =n, Sk, =mlwt, 8 (a1

“memzmw
xu'*;(S"‘ mjwk, ) (2
_ 1
a1 KPS. ‘,”J Z I[.,]l Z

E=h)

» (ﬂﬁ — ,,lj—p(g_', —mlw®, #). 23

Although (31)-{33) appear more computationally intensive
than (26)-29), the computational

mplexity remains the
same since the common parameters for each equivalence class
[] are calculated anly ance.
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VITERBI ALGORITHM

* Maximum a posteriori probability estimation of
hidden states S for realized values d and model

parameters
* Minimizing entropy H,(S|d)

H,(S|d)=0=(S|d)=f,(d)ac.= S = f,(D)ac.



SELF-ORGANIZATION
IN HIDDEN MARKOV MODEL

Time axis — dyadic frequency axis

Local causal states — hidden states

Local complexity Cli]=H((S[1])
Global complexity C=H(S)

Prostor
[
m
Frekvencija
v




THREE THEOREMS

 Global complexity measures increase of local
complexity in temporal domain

 Global complexity measures the accessibility of
denoising the signal in WGN

 Global complexity is minimal information required
for optimal prediction in spatial domain



DECOMPOSITION OF INFORMATION

e H(D)=H(S)+H(D|S) (noise)

* H(S) informational content of causal variable
(acausality — statistical causality)

« Measure of self-organization

* Minimal information for optimal prediction

 Optimal representation of a signal and denoising
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SUMMARY

Signal — Discrete representation

Statistical model — Hidden variables
Self-organization — Complexity
Mathematico-physical code (relevant information)



SERBIA - SRBIJA

 Not difficult — complex
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REPUBLIKA SRPSKA

21 year - adulthood



THE END
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